对数函数图像

初等函数常数函数、幂函数、指数函数
对数函数、三角函数和反三角函数
都有它们的级数形式
傅立叶级数和伽马函数不是初等函数
但也有它们的级数形式

对数函数

#「闪光时刻」主题征文 二期#

一. 基本知识

指数函数和对数函数是高中九个基本函数中重要的两个。同其他函数一样,还是要求掌握好函数的定义,三要素,图象和性质。指数函数是y=常数的x次方,x在指数的位置,底数大于0,且不为1。其图象为讲义气的义,过定点(0,1),底数大于1,为一撇,底数大于0小于1为一捺。当底数为一对倒数时,图象关于y轴对称。对数函数是y=以a为底x的对数,底数大于0且不为1,真数x大于0。其图象为躺着的讲义气的义,过定点(1,0)。底数为一对倒数时图象关于x轴对称。不管是指数函数还是对数函数,底数大于1为增函数,底数大于0小于1为减函数。

二. 基本题型

求定义域和值域。求定义域注意三点:偶次根号下的式子大于等于0,分母不为0,真数大于0。过定点问题。比大小:1)利用单调性比;2)利用媒介法比大小,常用的媒介有0和1。复合函数题型:1)分解;2)一一研究;3)综合解决问题。

指数函数图像及性质

指数函数图像及性质如下:

1、a>1,图像单调递增,走势是同为增函数时,底大近轴,对称性是底数互为倒数时,图像关于y轴对称。

2、0<a<1,图像单调递减,走势是同为减函数时,底小近轴,对称性是底数互为倒数时,图像关于y轴对称。

3、指数函数的自变量范围是(-∞,+∞),因变量范围是(0,+∞);当指数函数自变量范围在(-∞,0)时,因变量输出范围为(0,1)。

指数函数的判定

在理解指数函数的概念时,应抓住定义的“形式”像 y=2*3^x, y=2^1/x,y=3^根号x-2,y=(2^x)-1 等函数均不符合形式y=a^x(a>0,且a不等于1),因此它们都不是指数函数。

指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。